Phosphatidylinositide 3-kinase/AKT in radiation responses.
نویسندگان
چکیده
Ionizing or ultraviolet radiation-induced cellular survival signaling pathways induce development of cancer and insensitivity of tumor cells to radiation therapy. Accumulating evidence suggests that the phosphatidylinositide 3-kinase (PI3K)/AKT signal pathway is a major contributor to radioresistance. In many cell types PI3K/AKT signaling is a key cytoprotective response downstream of the EGFR family receptors and mediated carcinogenesis. Cytokines, such as HGF, IGF-I, and IL-6 also protects cells against apoptosis induced by radiation through PI3K/AKT pathway. The mechanics by which PI3K/AKT signaling functions in radiation responses may include its regulation of mitochondrial proteins, transcription factors, translation machinery, and cell-cycle progression. In addition, cross-talk between the PI3K/AKT pathway and mitogen-activated protein kinases, protein kinase A, and protein kinase C signal pathway may also play an important role.
منابع مشابه
Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil- and radiation-induced apoptosis.
Activation of the phosphatidylinositol 3- kinase/AKT pathway antagonizes apoptosis in diverse cellular systems. We previously showed that human plasma activated AKT and potently blocked the ability of chlorambucil or gamma radiation to induce apoptosis of B-chronic lymphocytic leukemia (CLL) cells. Here we report experiments that identify albumin as the major component of plasma that blocks CLL...
متن کاملThe phosphatidylinositide 3'-kinase/Akt survival pathway is a target for the anticancer and radiosensitizing agent PKC412, an inhibitor of protein kinase C.
Activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt survival pathway protects against apoptotic stress stimuli. Therefore, compounds that down-regulate this pathway are of clinical interest for single and combined anticancer treatment modalities. Here we demonstrate that the cytotoxic effect of the protein kinase C (PKC)-inhibitor N-benzoylated staurosporine (PKC412) is mediated via the...
متن کاملMicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma
BACKGROUND Radioresistance is a major challenge during the treatment of NK/T cell lymphoma. This study aimed to investigate the potential role of MicroRNA-150 (miR-150) in increase the sensitivities of NK/T cell lymphoma to ionizing radiation. RESULTS In this study, we found that miR-150 was significantly decreased in NK/T cell lymphoma tissues and cell lines. Low expression of miR-150 was po...
متن کاملHuman cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3'-OH kinase pathway and the cellular kinase Akt.
The temperature-sensitive cell line ts13 is mutated in CCG1, the gene encoding TAF(II)250, the largest of the TATA-binding protein-associated factors (TAFs) in TFIID. At the nonpermissive temperature, the temperature-sensitive phenotypes are (i) transcription defects, (ii) cell cycle arrest in G(1), and (iii) apoptosis. We previously demonstrated that the human cytomegalovirus (HCMV) major imme...
متن کاملStabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation.
The tumor suppressor p53 is commonly inhibited under conditions in which the phosphatidylinositide 3'-OH kinase/protein kinase B (PKB)Akt pathway is activated. Intracellular levels of p53 are controlled by the E3 ubiquitin ligase Mdm2. Here we show that PKB inhibits Mdm2 self-ubiquitination via phosphorylation of Mdm2 on Ser(166) and Ser(188). Stimulation of human embryonic kidney 293 cells wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Histology and histopathology
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2004